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Abstract. The effects of quenched dipole moments on a two-dimensional Heisenberg antiferromagnet are
found exactly, by applying the renormalization group to the appropriate classical non-linear sigma model.
Such dipole moments represent random fields with power law correlations. At low temperatures, they also
represent the long range effects of quenched random strong ferromagnetic bonds on the antiferromagnetic
correlation length, ξ2D, of a two-dimensional Heisenberg antiferromagnet. It is found that the antiferro-
magnetic long range order is destroyed for any non-zero concentration, x, of the dipolar defects, even at
zero temperature. Below a line T ∝ x, where T is the temperature, ξ2D is independent of T , and decreases
exponentially with x. At higher temperatures, it decays exponentially with ρeff

s /T , with an effective stiff-
ness constant ρeff

s , which decreases with increasing x/T . The latter behavior is the same as for annealed
dipole moments, and we use our quenched results to interpolate between the two types of averaging for
the problem of ferromagnetic bonds in an antiferromagnet. The results are used to estimate the three-
dimensional Néel temperature of a lamellar system with weakly coupled planes, which decays linearly with
x at small concentrations, and drops precipitously at a critical concentration. These predictions are shown
to reproduce successfully several of the prominent features of experiments on slightly doped copper oxides.

PACS. 75.10.-b General theory and models of magnetic ordering – 75.10.Nr Spin-glass and other random
models – 75.50.Ee Antiferromagnetics

1 Introduction

Consider an isotropic Heisenberg antiferromagnet, with a
concentration x of quenched random nearest neighbor fer-
romagnetic (FM) bonds, called impurities. These bonds
compete with the antiferromagnetic (AFM) order (which
results from the concentration (1−x) of the AFM bonds),
and introduce frustration into the problem. If the FM ex-
change on the “impurity” bonds is sufficiently strong, then
the two spins at the end of each such bond prefer energet-
ically to be parallel to each other, and perpendicular to
the background AFM staggered moment. The staggered
moments on the other sites then cant in this perpendicular
direction, and at large distance this canting angle decays
with distance r as 1/rd−1 in d dimensions, similarly to
the decay of magnetic moments in the presence of a mag-
netic dipole [1,2]. This follows [1] from a mapping of the
low temperature equations for the spin configuration at
the minimal energy onto the Laplace equation (see also
below, following Eq. (4)). The present paper presents a
renormalization group (RG) analysis of the AFM corre-
lations in the presence of such quenched dipoles. As we
show, this complex random problem is exactly renormal-
izable in two dimensions (2D), allowing a detailed study of

a e-mail: aharony@post.tau.ac.il

the dependence of the 2D AFM correlation length ξ2D on
T and on x. This also allows an ε-expansion in d = 2+ε di-
mensions. The three-dimensional Néel temperature TN (x)
of lamellar systems is then estimated by a model of weakly
coupled planes.

The description of FM bonds in a doped antiferro-
magnet by dipoles requires several assumptions, which
will be discussed in detail below. In particular, at high
temperature T the “dipolar” moments which describe the
dopant bonds may fluctuate, turning this aspect of the
problem into one which requires a combined annealed and
quenched averaging. Indeed, Glazman and Ioselevich (GI)
[3] studied this problem in its annealed limit, and cal-
culated ξ2D to leading order in x/T (See also Ref. [4])
Although the locations r` of the dipole-like impurities are
randomly quenched, each impurity involves an effective
dipole moment m(r`) which is still free to reach annealed
equilibrium in the presence of all the other dipoles. As we
show below, the effective dipoles develop dipole-dipole in-
teractions among them. Since the locations of the dipoles
are random, one expects them to behave like a dipole glass.
However, unlike the dipole glass, where the interactions
are fixed, the interactions among the dipoles are medi-
ated by the AFM spin background, whose behavior also
depends on temperature, concentration and configuration
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of the dipole moments. In the absence of a simple system-
atic way to handle such a combined quenched-annealed
problem, GI stopped their explicit calculations at the low-
x expansion. Here we argue that at sufficiently low T the
dipole moments, which interact via randomly quenched
dipole-dipole interactions, either freeze in a random spin
glassy way or at least develop very long range spin-glassy
correlations [5,6]. Assuming that the range of these cor-
relations is much larger than that of the AFM correla-
tions, this justifies treating these moments as quenched.
Indeed, this assumption is then confirmed by our calcula-
tions, which yield a finite AFM correlation length at all T
and finite x. Our calculations are thus complementary to
those of GI: theirs apply at low x, and ours apply at low
T . The actual fitting of data from doped antiferromag-
nets should involve some interpolation between the an-
nealed and quenched limits. To leading order in x/T , the
annealed and quenched calculations give the same results.
Therefore, our quenched results supply a good interpola-
tion over the whole range. Indeed, we show below that
our theory is consistent with data from doped cuprates,
which may be described at low doping as having localized
ferromagnetic bonds in a lamellar antiferromagnet [7].

Another major motivation of our study of quenched
random dipoles concerns the fact that, as we show be-
low, such dipoles are coupled to the gradient of the or-
der parameter, and therefore they are equivalent to cor-
related random fields, whose correlations in momentum
space are proportional to the square of the momentum.
Such fields lower the critical dimensions of the random
field N -component spin model by 2, from 6 to 4 for the
upper critical dimension, and from 4 to 2 for the lower
one. In reference [8] this has been established for the limit
N →∞. Here we show that the lower critical dimension is
shifted down from d = 4 to d = 2, for all N > 2. As a re-
sult, both the temperature and the variance of the random
dipole moments (which is proportional to the concentra-
tion, x) are marginal (in the RG sense) at d = 2, allowing
for an analytical solution of the recursion relations. This
marginality of the randomness is related to the 2D in-
frared divergence of the Villain canted states [1]. Within
the one-loop approximation, we obtain an exact expres-
sion for the exponential part of the 2D correlation length,
which remains finite at all non-zero x.

We describe the system by the reduced Hamiltonian
(i.e., the Hamiltonian divided by the temperature T )

H = Hpure +Hint, (1)

where Hpure is the classical non-linear sigma model
(NLσM) for the pure (non-random) system, representing
the long wave length Hamiltonian related to the fluctua-
tions of the unit vector n(r) of antiferromagnetism,

Hpure =
1

2t

∫
dr
∑
i,µ

(∂inµ)2, t = T/ρs. (2)

Here i = 1, ..., d and µ = 1, ...,N run over the spatial
Cartesian components and over the spin components, re-
spectively, ρs is the stiffness constant and ∂i ≡ ∂/∂xi.

This Hamiltonian is known to give an excellent descrip-
tion of the undoped antiferromagnet, both theoretically
[9] and experimentally [10]. The usual treatment of this
model assumes long range order in some direction, and
then treats the N − 1 transverse spin components (called
σµ) perturbatively. The success of this description results
from the fact that, although the problem involves quan-
tum spin fluctuations, these can be integrated out at any
finite T , causing only a renormalization of ρs.
Hint is constructed [3] to reproduce the dipolar effects

at long distances: Denoting by a(r`) the unit vector di-
rected along the doped bond at r`, and by Mm(r`) the
corresponding dipole moment (where m(r`) is a unit vec-
tor giving the direction of the dipole, and M is its magni-
tude),

Hint =
1

t

∫
dr
∑
i

fi(r) · ∂in, (3)

with

fi(r) = M
∑
`

δ(r− r`)ai(r`)m(r`). (4)

Note that since n is a unit vector, ∂in is perpendicular
to n and hence Hint contains only the N − 1 components
of the N -component vector fi which are transverse to n.
However, since the vector n varies with r, all the compo-
nents of m may enter at the end. To see the dipolar nature
of Hint, note that for a single impurity at the origin, H
is minimized when the Fourier transform of nµ solves the
Laplace equation

q2nµ(q) = Mmµia · q, (5)

with the solution n(r) = n0 + δn(r), where δn(r) =
−Mma · r/(2πr2), just as for a dipole in 2D. A similar
Laplace equation appears when one looks for the mini-
mum energy of a Heisenberg system at low temperatures,
when the angles between neighboring spins are small [1].

As stated, GI treated the variables m as annealed.
Here we treat all the variables r`, a(r`), and m(r`) as
quenched. Denoting quenched averages by [...], we write[

a(r)
]

= 0,[
mµ(r)

]
= 0,[

ai(r)aj(r
′)
]

= δijδ(r− r′)x/d,[
mµ(r)mν(r′)

]
= Qδµνδ(r− r′), (6)

so that [fiµ] = 0 and[
fiµ(r)fjν(r′)

]
= λδµνδijδ(r− r′), (7)

with

λ = M2Qx/d ≡ Ax, (8)

where A = O(1). At low T one expects Q ≈ 1/N .



V. Cherepanov et al.: Suppression of AFM correlations by quenched dipole-type impurities 513

One can see now that Hint represents random fields
with quenched correlations: Fourier transforming the vari-
ables in equation (3), Hint can be written in the form

Hint =
1

(2π)dt

∫
dk
∑
µ

hµ(k)nµ(−k), (9)

with the random field h(k),

hµ(k) = i
∑
j

kj

∫
drfjµ(r)eik·r, (10)

which has quenched correlations[
hµ(k)h∗ν(k′)

]
= λk2δµνδ(k− k′). (11)

Such correlations shift the critical dimension of the ran-
dom field Heisenberg problem down to 2. A heuristic way
to show this follows Imry and Ma [11] in assuming an
ordered state and considering the transverse spin fluctu-
ations, M⊥(r). In momentum space, one has M⊥(q) =
G⊥(q)h⊥(q), with G⊥(q) ∼ 1/q2, where h⊥(q) denotes
the transverse random field. Thus[
M⊥(r)M⊥(r′)

]
=

(
1

2π

)2d ∫
ddqddq′G⊥(q)G⊥(q′)

×
[
h⊥(q)h⊥(q′)

]
ei(q·r+q′·r′). (12)

For
[
hµ(q)hν(q′)

]
∝ δµνqθδ(q + q′), this integral diverges

for d < 4− θ, implying that the assumption of long range
order is invalid. This identifies the lower critical dimension
as d` = 4 − θ, and for our case, d` = 2. The calculations
below support this picture. In addition to giving an exact
solution for the problem at hand, we note that the present
formalism might also be used as a starting point for a
double expansion, in ε and in 2−θ, aiming at other random
field problems.

The conventional method to treat the NLσM expands
the order parameter unit vector n about a spatially uni-
form ordered state [12,13]. Using replicas to handle the
quenched randomness we have found that this approach
generated local random fields, which seem to break the
symmetries of the original model. Similar problems were
found for other problems near 4D, where they required a
resummation of the perturbation expansion [14]. Uncor-
related random fields were also generated in a renormal-
ization group analysis of correlated random fields for the
Ising model [15]. We suspect that those fields are also arti-
facts of the method used. We hope that the present study
will reopen a discussion of these problems, which are im-
portant for our understanding of the analysis of correlated
random systems. In our case, the problems may have come
either from the replicas or from the assumption of a spa-
tially uniform state. Such a state does not exist when there
is some local freezing of the moments in random directions
(as happens in the random case discussed here). We avoid
both of these by going back to the original RG approach
by Polyakov [16], and by treating the randomness without
replicas. In 2D, this allows us to obtain ξ2D for all values
of ρsx/T .

We show that the quenched dipoles suppress the anti-
ferromagnetic correlations, so that the correlation length
is a decreasing function of ρsx/T , remaining finite at any
non-zero x, even at T = 0. This implies the destruction
of the antiferromagnetic long range order in 2D for any
concentration. As x increases, ξ2D(T = 0) decays expo-
nentially, representing the sizes of the Imry-Ma domains
for this system.

In order to compare the results of our model with
experiments, which are usually performed on quasi-2D,
or lamellar, systems of weakly coupled planes, we con-
sider the 3D ordering of such a system by using the re-
lation αξ2

2D ∼ 1. Here, α represents either the inter-
plane coupling, that is the relative interplane exchange,
J⊥/J ∼ J⊥/2πρs, or the in-plane relative spin anisotropy
(in the presence of which even an infinitesimal coupling
suffices to yield 3D ordering). Although it is not expected
to give the correct 3D critical behavior, this procedure
proved to give excellent results for the 3D Néel temper-
ature in the pure case [10]. This “mean field” procedure
is also justified by an RG argument: to linear order in α,
the RG recursion relation for α is α′ = e2`α, where e`

is the length rescale factor. After ` iterations of the RG
the effective coupling between planes involves renormal-
ized spins, contained in the area e2` of the renormalized
cell. A 3D behavior is expected when this effective cou-
pling becomes comparable to 1. As we show in Appendix
B, similar results for the phase diagram are also found
from integrating the RG recursion relations in d = 2 + ε
dimensions.

The outline of the paper is as follows. Section 2 dis-
cusses the RG procedure, and Section 3 describes the RG
recursion relations for the quenched averaging. The 2D
recursion relations are then solved in Section 4, and the
resulting ξ2D is used for estimating the 3D phase tran-
sition line TN (x) in Section 5. Section 6 then contains a
discussion of the alternative annealed averaging. The re-
sults are compared with experiments on doped cuprates
in Section 7, and discussed in Section 8. Details of the
calculations and extensions to d = 2 + ε are given in the
Appendices.

2 The renormalization group procedure

Following the RG approach of Polyakov [16,17], we de-
compose n(r) into a slowly varying part, given by the unit
vector ñ(r), and N − 1 fast variables φµ(r) (replacing the
“usual” σµ’s), such that

n(r) = ñ(r)
√

1− φ2(r) +
N−1∑
µ=1

φµ(r)eµ(r),

φ2(r) =
N−1∑
µ=1

φ2
µ(r). (13)

The unit vectors ñ(r) and eµ(r), µ = 1, ...,N − 1, form
an orthonormal basis. The Fourier transform of the fast
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variables φµ,

φµ(r) = (2π)−d
∫
dqeiqrφµ(q), (14)

is restricted to wave vectors q in the range b−1 ≤ q ≤ 1.
The upper bound is the inverse of the microscopic length
(which is measured in units of the lattice constant), and
b is the length rescale factor for the renormalization pro-
cedure. These q values are to be integrated out. After the
iteration the correlation length ξ is renormalized into ξ/b.

The Hamiltonian H requires the derivatives of n(r).
Using the relations ñ·∂iñ = 0, ñ·eµ = 0, and eµ ·eν = δµν ,
we set

∂iñ =
N−1∑
µ=1

Bµi eµ, ∂ieµ =
N−1∑
ν=1

Aµνi eν −B
µ
i ñ, (15)

where Aνµi = eµ · ∂ieν = −Aµνi . Then we find

∂in = ñ

{
∂i
√

1− φ2 −
N−1∑
µ=1

Bµi φµ

}

+
N−1∑
µ=1

eµ

{
∂iφµ +Bµi

√
1− φ2 +

N−1∑
ν=1

Aνµi φν

}
.

(16)

We show in Appendix A that the functions Aµνi , which
give the first derivatives of the base vectors eµ, can be
eliminated by a suitable gauge transformation when one
ignores higher order derivatives [16,18]. Therefore, these
are omitted in the following.

In terms of the new variables, the Hamiltonian H, to
order φ2

µ, reads

H = H0 +H1 +H2 +H3 +H4, (17)

with

H0 =
1

2t

∫
dr
∑
iµ

{(
Bµi (r)

)2
+ (∂iφµ(r))2

}
, (18)

H1 =
1

t

∫
dr
∑
iµ

Bµi (r)gµi (r), (19)

H2 =
1

2t

∫
dr
∑
iνµ

Bµi (r)Bνi (r)
{
φµ(r)φν(r)− δµνφ

2(r)
}
,

(20)

H3 = −
1

t

∫
dr
∑
iµ

Bµi (r)

{
ui(r)φµ(r) +

1

2
gµi (r)φ2

}
,

(21)

and

H4 =
1

t

∫
dr
∑
iµ

{
gµi (r)∂iφµ(r) −

1

2
ui(r)∂iφ

2
µ(r)

}
.

(22)

Here we have introduced the notations

ui(r) = ñ(r) · fi(r), gµi (r) = eµ(r) · fi(r), (23)

for the longitudinal and transverse components, respec-
tively, of fi in the new variables. Indeed, equation (19)
represents the bare form of Hint in this system. In H0 the
slow variables, Bµi , are separated from the fast ones φµ.
[One should notice that (∂inµ)2 also yields the contribu-
tion (1/t)

∫
dr
∑
iµB

µ
i ∂iφµ. However, this term vanishes

upon Fourier transforming, as φµ pertains to the large q
portion of the Brillouin zone, while the slow variables Bµi
belong to the small q values, q ≤ b−1.] The Hamiltoni-
ans H2, H3, and H4, of order O(B2), O(B1), and O(B0),
respectively, will be treated in perturbation theory.

3 Renormalization group equations

The first step in deriving the recursion relations involves
integration over the fast variables φµ. This requires the
Green’s functions,

〈φµ(r)φν(r′)〉 = δµνG(r− r′),

G(r) = (2π)−d
∫
b−1≤q≤1

dqeiq·rĜ(q),

Ĝ(q) = t/q2, (24)

where 〈...〉 denotes a thermal average with H0. As we shall
see below, to leading order in ε = d−2 we need G(r) only
at strictly 2D, where

G(0) =
t

2π
ln b. (25)

Hence 〈φ2〉 is small for ln b � 2π/t. In practice, G(r) is
significantly different from zero only for 1 < r < b, where
it is approximately given by the 2D Coulomb interaction

G(r) ≈
t

2π
ln
b

r
· (26)

We next turn to the perturbation expansion in H2, H3,
and H4. The first order yields

H(1) = 〈H2 +H3〉

=
1

2t

∫
dr
∑
iµ

(Bµi (r))
2

(2−N )G(0)

−
1

2t

∫
dr
∑
iµ

Bµi (r)gµi (r)(N − 1)G(0). (27)

The first term here represents the leading order renormal-
ization of 1/t, as usual [13,16]. The second term, which is
linear in Bµi , is similar to the initial Hint, or to the equiv-
alent equation (19). In fact, this term contributes to the
renormalization of the transverse components of fi.

Higher order perturbations contain higher powers of
φ, which yield higher powers of G and hence of t. In the
following, we keep only leading powers of t. Neglecting
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the terms involving products of two G’s, the second order
perturbation yields

H(2) = −
1

2
〈(H3 +H4)2〉

= −
1

2t2

∫
dr1dr2

∑
ijµ

gµi (r1)gµj (r2)∂1i∂2jG(r12)

+
1

t2

∫
dr1dr2

∑
ijµ

Bµi (r1)ui(r1)gµj (r2)∂2jG(r12)

−
1

2t2

∫
dr1dr2

∑
ijµ

Bµi (r1)Bµj (r2)ui(r1)uj(r2)G(r12),

r12 = r1 − r2. (28)

The first term here is B-independent. In principle, it gives
rise to an interaction between the dipoles: Inserting G(r)
and the explicit expressions for gµi (Eqs. (4, 23)) we rewrite
this term in the form

Hdd =
1

t

∑
k`

Ik`m⊥(rk) ·m⊥(r`), (29)

where m⊥(r`) is the component of the dipole moment at
r` which is perpendicular to ñ. In d = 2 one has

Ik` =
1

4π
M2 1

r2
k`

×

{
2

(
a(rk) · rk`

)(
a(r`) · rk`

)
r2
k`

− a(rk) · a(r`)

}
, (30)

with rk` < b. Apart from trivial factors, this reproduces
the effective dipole-dipole interaction found in reference
[3]. There, equation (29) was used to integrate over the
variables m⊥, treating them as annealed variables. In the
present calculation we treat the dipoles as quenched, and
therefore equation (29) simply represents a constant which
is to be added to the energy. We return to this point in the
following. The other two (B-dependent) terms in the sec-
ond order perturbation Hamiltonian, equation (28), will
contribute to the renormalization of the temperature and
the variance of the dipolar quenched interaction.

Finally, the third order perturbation Hamiltonian,
keeping terms up to order B2, is

H(3) =
1

6
〈H3

4〉+
1

2

(
〈H2

4H3〉+ 〈H4H
2
3〉+ 〈H2H

2
4〉
)
. (31)

Integrating out the variables φ, it is seen that the first
term here is independent of B; it contributes further to
the dipole-dipole interaction. The next term in (31) yields
an expression linear in B,

1

2
〈H2

4H3〉 = −
1

2t3

∫
dr1dr2dr3

∑
ijk

∑
µ

Bµi (r1)

×
{∑

ν

gµi (r1)gνj (r2)gνk(r3)∂2j∂3kG(r21)G(r31)

− 2ui(r1)gµj (r2)uk(r3)∂2j∂3kG(r23)G(r31)
}
,

(32)

which again contributes to Hint, while the last term there
gives a B2 contribution

1

2
〈H4H

2
3 +H2H

2
4〉 =

1

2t3

∫
dr1dr2dr3

∑
ijk

∑
µ

×
{
−Bµi (r1)Bµi (r2)ui(r1)uj(r2)uk(r3)∂3kG(r13)G(r23)

+ 2
∑
ν

Bµi (r1)Bνj (r2)ui(r1)gνj (r2)gµk (r3)∂3kG(r12)G(r23)

+
∑
ν

(
Bµi (r1)Bνi (r1)gµj (r2)gνk(r3)

−Bµi (r1)Bµi (r1)gνj (r2)gνk(r3)
)
∂2j∂3kG(r12)G(r13)

}
.

(33)

Except for the first term in equation (27), all the generated
terms involve the longitudinal and transverse components
of the vectors fi, ui and gµi , equation (23), which depend
on the quenched random variables r`, a(r`), and m(r`).
Using equation (7) we thus find

[
gµi (r)gνj (r′)

]
= λδijδµνδ(r− r′),[

ui(r)uj(r
′)
]

= λδijδ(r− r′),[
ui(r)gµj (r′)

]
= 0. (34)

We now obtain the recursion relations of the RG. Consider
first the quenched averages of the integrated Hamiltonians
H(`), ` = 1, 2, 3. This will constitute the renormalization of
1/t. Rescaling the lengths by b−1 and the slow derivatives
Bµi (q) by bd−1, the new temperature prefactor, multiply-
ing the integral over (Bµi )2, obeys the RG equation

1

t′
= bd−2

[
1

t
+

2−N

2π
ln b+

1−N

2π

λ

t
ln b

]
, (35)

which is valid to first order in ε = d − 2, t and λ. To
obtain this equation, we have used equations (34) and the
relation

∑
j

∫
dr2

(
∂2jG(r12)

)2
= tG(0). (36)

The terms in the Hamiltonian linear in Bµi remain as
quenched random contributions. They renormalize fiµ and
yield a renormalization of its variance λ. To obtain the re-
cursion relation for λ, we collect all terms linear in B and
write them in the form

1

t

∫
dr
∑
iµ

Bµi (r)Γµi (r), (37)
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with

Γµi (r) = gµi (r)

(
1−

1

2
(N − 1)G(0)

)
+

1

t

∫
dr1

∑
j

ui(r)gµj (r1)∂1jG(r− r1)

−
1

2t2

∫
dr1dr2

∑
jk{∑

ν

gµi (r)gνj (r1)gνk(r2)∂1j∂2kG(r1 − r)G(r2 − r)

− 2ui(r)gµj (r1)uk(r2)∂1j∂2kG(r1 − r2)G(r2 − r)

}
.

(38)

We then find the variance of Γµi (r) by the one-loop calcu-
lation, which to leading order, using equations (34), yields[
Γµi (r)Γµ

′

i′ (r′)
]

= δii′δµµ′δ(r− r′)

× λ

(
1− (N − 1)G(0) +

λ

t
(2−N )G(0)

)
.

(39)

Hence, the recursion relation for λ is(
λ

t2

)′
= bd−2 λ

t2

[
1−

t(N − 1) + λ(N − 2)

2π
ln b

]
. (40)

One also needs to consider the fluctuations of the ran-
dom terms around their quenched averages, as well as
new terms, which were not included in the initial H, but
are generated by the renormalization procedure. However,
these are irrelevant. Let us take as an example the last
term in (28), which we may write as

1

2t

∫
dr1dr2

∑
µij

Wij(r1r2)Bµi (r1)Bµj (r2). (41)

Physically, this term describes a random interaction
among the gradients of the order parameter n, which are
absent in the original problem. As the ensemble average
contribution of this interaction has been analyzed above
(see the last term in Eq. (35)), we need to consider here
the deviation

δWij(r1r2) = −
1

t

[
ui(r1)uj(r2)− λδijδ(r1 − r2)

]
G(r12).

(42)

Using equations (34), it is easy to see that

[δWij(r1r2)δWi′j′(r
′
1r′2)] =

λ2

t2
[
δii′δjj′δ(r1 − r′1)δ(r2 − r′2)

+ δij′δji′δ(r1 − r′2)δ(r2 − r′1)
]
G(r12)2. (43)

Since the range of G(r) is of order b, the correlations
among these generated W ’s are short range, and in prac-
tice the W ’s can be treated as uncorrelated, i.e.

[δWij(r1r2)δWi′j′(r
′
1r′2)] = ∆

[
δii′δjj′δ(r1 − r′1)δ(r2 − r′2)

+ δij′δji′δ(r1 − r′2)δ(r2 − r′1)
]
δ(r12). (44)

A simple power counting then shows that (W/t) scales as
b2d−2, W scales as bd and hence

d∆

d`
= −d∆+O(t, λ). (45)

Therefore, this generated random coupling is irrelevant.
Similar arguments apply for the variances of all the other
random terms which are generated in the renormalization
procedure.

We now follow standard procedures, and use an in-
finitesimal length rescale factor b = eδ`. To linear order in
ε = d− 2, t and λ, equations (35, 40) now become

d

d`

1

t
= ε

1

t
+

2−N

2π
+

1−N

2π

λ

t
,

d

d`

λ

t2
= ε

λ

t2
+

1−N

2π

λ

t
+

2−N

2π

λ2

t2
· (46)

Combining these two equations yields

dt

d`
= −εt+

N − 2

2π
t2 +

N − 1

2π
tλ,

dλ

d`
= −ελ+

N − 3

2π
λt+

N

2π
λ2. (47)

Clearly, these equations show that d = 2 is the lower
critical dimension for the NLσM with quenched dipoles.
Hence, the 2D problem is exactly renormalizable (as done
in the next section), and one can obtain an ε-expansion in
d = 2 + ε dimensions (as done in Appendix B).

4 The correlation length of a 2D Heisenberg
system

We now proceed to calculate ξ2D. To this end we solve
equations (47) with the initial values t(`0) ≡ t0, and
λ(`0) ≡ λ0. The parameter `0 represents some prefacing
iterations. In the simplest case, we assume that `0 = 0,
and thus that e`0 ≡ L0 = 1. Other choices for L0 will
be discussed below. The solution is particularly simple for
the Heisenberg system, N = 3. At 2D one finds

λ(`) = λ0

(
1−

3λ0

2π
(`− `0)

)−1

,

λ(`)

t(`)
− 1 =

(
λ(`)

λ0

)1/3(
λ0

t0
− 1

)
. (48)

Both t(`) and λ(`) flow away from the fixed point t = λ =
0 as ` increases. From the second of equations (48) it is
seen that λ0 > t0 implies λ > t, and vice versa.
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The standard scaling relation for the correlation length
is

ξ(t, λ) = e`ξ(t(`), λ(`)). (49)

The correlation length ξ is obtained from the matching
condition at ` = `∗,

max
(
t(`∗), λ(`∗)

)
= 2π, (50)

where `∗ is chosen so that ξ(t(`∗), λ(`∗)) is of the order of
the renormalized lattice constant. In practice, this implies
that at ` = `∗, ξ is a slowly varying function of its vari-
ables, which we denote by C̃(t, λ). The first of equations
(48) gives

`∗ − `0 =
2π

3λ0

(
1−

λ0

λ(`∗)

)
, (51)

where λ(`∗) is equal to 2π for λ0 > t0, and is given by the
solution of(

λ0

λ(`∗)

)2/3
[(

λ0

λ(`∗)

)1/3

− 1 +
λ0

t0

]
=
λ0

2π
, (52)

for t0 > λ0. Equations (49, 51) give the 2D correlation
length,

ξ2D(t, λ) = L0C̃(t, λ) exp

[
2π

3λ0

(
1−

λ0

λ(`∗)

)]
. (53)

In the low temperature limit, λ0/t0 � 1, we stop iter-
ating when λ(`∗) = 2π, and consequently

ξ2D ≈ L0C̃(t, λ) exp

[
2π

3λ0

(
1−

λ0

2π

)]
. (54)

It follows that ξ2D is finite at any finite λ0, even as t0 ap-
proaches zero. This implies that at zero temperature the
long-range order in 2D Heisenberg magnets is destroyed at
any small amount of defects (as indeed predicted already
by Villain [1]). This conclusion is also supported by the
observation mentioned above, that Hint represents corre-
lated random fields. The exponential form of equation (54)
is similar to that found for other random field problems
at the lower critical dimension [11]. Monte-Carlo simula-
tions [19] also suggest that the zero temperature corre-
lation length is finite in 2D classical Heisenberg magnets
with frustrated bonds. When the correlation length of the
2D system remains finite at zero temperature, it measures
the size of the Imry-Ma domains, which is given by an
exponential form like equation (54).

When λ0 < t0 � 1, we can approximate λ0/λ(`∗) by
(1− λ0/t0)3 (see Eq. (52)) and obtain

ξ2D = L0C̃(t, λ) exp

(
2π

t0

[
1−

λ0

t0
+
λ2

0

3t20

])
. (55)

The exponential part may be interpreted as a renormal-
ization of the effective stiffness constant in the usual ex-
pression for the 2D Heisenberg model,

ρeff
s = ρs(1− y + y2/3),

y = λ0/t0 = Axρs/T, (56)

where we have used equation (8). To leading order in
xρs/T , this coincides with the expression which was ob-
tained in reference [3] for an annealed system of dipoles.
Indeed, up to the lowest order in λ/t there is no difference
between quenched and annealed averaging.

Finally, we discuss the pre-exponential factor in the
expressions for the correlation length. For λ0 � t0, the
prefactor C̃(t, λ) ≈ C̃(t0, 0) is known: The two-loop [9]
and three-loop [20] calculations, based on the quantum
NLσM, show that

C̃(t0, 0) =
e

8

c

2πρs

(
1−

t0

4π

)
, (57)

where c is the spin-wave velocity.
At low temperatures, we need the concentration de-

pendence of the pre-exponential factor. This results from
higher order loops: At 2D, t = 0 and N = 3, the general-
ized recursion relation for λ has the generic form

dλ

d`
= β2λ

2 + β3λ
3, (58)

with β2 = 3/(2π) and with β3 of order β2
2 . The solution

for this equation reads

e`−`0 =

(
λ0(β2 + β3λ(`))

λ(`)(β2 + β3λ0)

)β3/β
2
2

× exp

[
1

β2

(
1

λ0
−

1

λ(`)

)]
, (59)

and therefore, at ` = `∗, where λ(`∗) = 2π, we have

e`
∗

∼ L0x
β3/β

2
2 exp[2π/(3λ0)]. Consequently, C̃(t, λ) ≈

C̃(0, λ) ≈ C0λ
ω, with ω = β3/β

2
2 .

Within the approximations leading to equations
(54, 55), we note that the expressions in the exponentials
and their first derivatives are continuous at λ0 = t0, up to
terms of order O(λ0/2π). In comparing our results with
the experiment, we shall use these asymptotic expressions
all the way to the line λ0 = t0.

5 The phase boundary for weakly coupled
planes

The 3D transition temperature TN(x), as function of the
defect concentration x, of a system consisting of weakly
coupled planes may be deduced from the relation

αξ2
2D(tN , λ) ∼ 1. (60)

(Note that λ is proportional to x, cf. Eq. (8).) The pa-
rameter α can be generated by an interplane exchange,
J⊥/J ∼ J⊥/2πρs, or some in-plane spin anisotropy. As
stated in the Introduction, this procedure gives excellent
estimates for TN [10].

To obtain the critical line TN (x) we proceed as follows.
Using (53) in the relation (60) we find

1−
λ0

λ(`∗)
=

3λ0

4π
ln
[
α
(
L0C̃(t, λ)

)2]−1
. (61)
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At low temperature, i.e., for λ0 > t0, we have λ(`∗) = 2π
and therefore equation (61) is almost independent of t.
It thus yields a critical value for the initial value of the
variance, λc, and hence a critical concentration, xc, above
which there is no antiferromagnetic long-range order at
any temperature

λc =
2π

1 + 3
2 ln
[
α
(
L0C̃(0, λc)

)2]−1 , (62)

with λc = Axc. In fact, ξ2D is expected to be practically
independent of temperature (except for the very weak de-

pendence of the prefactor C̃) for a range of values, λ0 > t0,
as given in equation (54). Therefore, the critical line TN(x)
is expected to be practically vertical for tN (x) < λ0 = Ax.
Below this line, one might expect some range in which spin
glass and antiferromagnetism co-exist, down to a Gabay-
Toulouse like line [6]. To obtain this region one would need
to also consider the 3D boundaries of the spin glass phase,
as well as the anisotropies which allow the existence of spin
glass long range order, and this is beyond the scope of the
present paper. In any case, the AFM ordering will persist
up to the line x = xc.

At smaller defect concentrations, or at higher temper-
atures, i.e., for 2π � t0 > λ0, equations (52, 61) give

1−
λ0

tN (x)
=

{
1−

3λ0

tN (0)

}1/3

,

1

tN (0)
=

1

4π
ln
[
α
(
L0C̃(tN (0), 0)

)2]−1
, (63)

where tN (0) is the Néel temperature of the pure anti-
ferromagnet. The lowest order of this expression agrees
with the results of reference [3], obtained by an annealed
average.

6 Annealed averaging

As stated above, the description of FM bonds in an an-
tiferromagnet by dipoles requires some mixed annealed-
quenched averaging. We start by reviewing a simple ver-
sion of GI’s analysis [3]. In their approach, r` and a(r`)
are treated as quenched variables, with averages given by
equation (6), while m(r`) is treated as annealed. Thus,
equation (7) is replaced by

[fiµ(r1)fjν(r2)] = δijδ(r12)Λµν(r1), (64)

with

Λµν(r) = mµ(r)mν(r)M2x/d. (65)

Initially, H contains no interactions among the dipole mo-
ments {m(r)}. However, the RG iterations generate the
dipole-dipole interaction, as given by equation (29). This
interaction is mediated via the canted background AFM
moments. Treating this interaction as a small perturba-
tion, to lowest order, we can next integrate the dipole

moments out of the partition function, using the annealed
averaging 〈mµ(r1)mν(r2)〉 = δµνδ(r12)/N , so that

〈Λµν〉 = δµνΛ ≡ δµνM
2x/(dN ). (66)

Note that to this leading order, Λ = λ! GI wrote down a
more general form for this thermal average, involving the
susceptibility which results from the quadratic coupling in
Hdd. This reduces to the above expression at lowest order.

Up to equation (33), we have performed no averag-
ing. In the annealed case, the recursion relation are de-
rived from the same equations, using the averages as listed
above. The resulting recursion relation for 1/t turns out
to be the same as equation (35), with λ replaced by Λ.
In contrast, the averaging over m gives no contributions
to the renormalization of fi, since all the generated terms
which are linear in Bµi involve odd powers of the ui’s and
the gµi ’s, and therefore odd powers of the mµ’s. All of these
vanish upon the annealed averaging over the mµ’s. Thus,
we end up with (

Λ

t2

)′
= bd−2

(
Λ

t2

)
· (67)

At 2D, equation (67) implies that Λ is unrenormalized.
The solution of the recursion relation for t then yields

` =
π

Λ
ln

1 + 2Λ/t(0)

1 + 2Λ/t(`)
· (68)

Assuming that Λ� 2π, and integrating up to t(`∗) = 2π,
yields

`∗ ≈
2π

t(0)

(
1−

Λ

t(0)

)
, (69)

which agrees to leading order with the quenched
result (55).

This annealed averaging is legitimate as long as the
renormalized distance between the impurities remains
large, so that the dipole-dipole interaction which is gen-
erated during the iterations remains small. Note that the
range of Hdd is b = e`

∗
. Thus, if e`

∗
is small compared

to the inter-impurity distance x−1/d, then we can still
treat the dipoles as independent degrees of freedom, ig-
nore the interaction between them and continue the above
annealed calculation. However, if e`

∗
becomes larger than

(but of the order of) x−1/d then each renormalized cell
contains more than one impurity, and the interaction be-
tween them comes into play. Since this interaction decays
as 1/rd, the dipoles behave like a spin glass which is at
its lower critical dimension [6]. We thus expect the dipole
moments to develop spin-glassy correlations, with a cor-
relation length ξsg which grows exponentially in Edd/T ,
where Edd = λρs represents the dipole-dipole energy. Hav-
ing shown that ξ2D remains finite at all T , we expect that
for T � Edd one has ξsg � ξ2D, the moments inside a
renormalized cell (at distances smaller than ξ2D) freeze
randomly, with the effective Edwards-Anderson order pa-
rameterQ, and we can switch to our quenched calculation.
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We thus choose to perform a prefacing annealed renor-
malization, up to e`0 = L0 ∼ x−1/d. For larger ` we as-
sume that the dipole moments are frozen at low T , and
we switch to the quenched analysis of Sections 4 and 5.

7 Comparison with experiments on doped
cuprates

One motivation of the present study arises from its pos-
sible relevance to the understanding of the doping depen-
dence of the magnetic order in the lamellar copper oxides.
Experimentally, doping such oxides leads to a rapid de-
crease in both ξ2D and TN [10,21–27]. Experiments on
doped La2CuO4 show that above x = xc ≈ 2%, ξ2D re-
mains finite even at zero temperature, and there is no
AFM order. This strong effect of the doping has been at-
tributed to frustration, because of the strong FM exchange
on the Cu–O–Cu bonds which (at small x) have localized
holes due to the doping [7]. This frustration also led to
the prediction of a magnetic spin glass phase for x > xc
[7], as recently confirmed in detail in doped La2CuO4 [28].
The experimental verification of this spin freezing above
xc [10,25,27–30] confirms the picture of localized holes.
This localization is also confirmed by direct conductance
measurements at x ≤ 5% and low temperature T [10,29].

Although the above picture may not be the only pos-
sible explanation for the phase diagram of the cuprates
at low x, the following discussion assumes the frustration
model and then shows that the experiments are consistent
with the predictions of the previous sections. As stated
above, the most direct application of our theory is at zero
temperature, where our quenched averaging should apply.
In that limit we use the results from Sections 4 and 5.
The other limit, of low x, is also easy: then the quenched
and annealed averages coincide, and to linear order in x
we can compare experiments with the GI result, based on
equation (68). Although there exist uncertainties on where
exactly one should switch from quenched to annealed av-
eraging, we fit the experiments to the expressions which
follow from our quenched calculation. These expressions
are correct in both limits of low x and low T , and should
thus supply a good interpolation for the whole range near
the 3D transition temperature TN(x).

For the fitting, we adopt the following strategy: We
start by fitting A ≡ λ/x from the t-dependence of ξ2D
at high T and small x. As stated, this dependence is the
same for both types of averages, and could already be
done using the results of GI. Given A, we next fit the x
dependence of ξ2D in the limit of very low T , when ξ2D is
T -independent. This behavior should be described by our
quenched theory. The fit determines the pre-exponential
factors. Finally, we use the results (without any further
adjustments) to calculate the phase diagram, TN (x). This
calculation is based on our quenched formulation, and thus
involves some interpolation.

We begin with the temperature dependence of the cor-
relation length at low concentrations, x < xc. Data taken
on a sample of La2CuO4+δ, with TN = 90 K [10], show a
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Fig. 1. (t/2π) ln(ξ/C) versus 1/t for La2CuO4+δ with TN =
90 K. The points are from reference [10]. The straight line
shows the fit to equation (55), with λ0/t0 � 1.

practically linear dependence of (t/2π) ln(ξ/C) on 1/t, in
agreement with both our quenched result (55) and our an-
nealed result (69). For the coefficient C in this fit we used
C = 1.92 Å, derived from equation (57) with ρs = 24 meV
(See Ref. [10]) and L0 = 1. The slope is Λ = λ0 = 0.29(1)
(see Fig. 1, and also Ref. [4]). To estimate the value of x for
this sample, we follow references [10,31] and approximate
the line TN (x) by the straight line TN(x) ≈ 325−16250x,
which extrapolates to x = 0.02 as TN is extrapolated to
zero. Using this approximation, we find that TN = 90 K
at x = 0.0145. Thus, A = λ/x ≈ 20. Although we have
some problems with this linear extrapolation (see below),
the value of x cannot be larger than xc ≈ 0.02, so the
uncertainty in A is not more than 30%. Furthermore, al-
though A might have a weak dependence on T and on x,
this could most probably be absorbed in this error esti-
mate. We thus use this estimate A = 20 in everything that
follows.

Keimer et al. [10] measured the temperature depen-
dence of the correlation length for three magnetically dis-
ordered samples of La2−xSrxCuO4, with x ≈ 0.02, 0.03,
and 0.04. The error in x is less than ∼ 0.005. It is be-
lieved [10] that the hole concentration is about that of
the Sr ions. It was found that at low temperatures ξ
does not depend on T , and falls with the increase of x
faster than a power law. The ξ(T = 0) data is depicted
in Figure 2, together with the value of ξ cited in refer-
ence [29] for La1.95Ba0.05CuO4. The figure also shows the
theoretical values of ξ, calculated from equation (54), with

L0C̃(0, λ0) = C0λ
ω′

0 , λ0 = 20 x, C0 = 2.8 Å and ω′ = 0.8.
(In 2D, we now have ω′ = ω−1/2, from the x dependence
of L0.) We also reproduce in Figure 2 the numerical re-
sults obtained in reference [19]. These authors computed
the effect of holes localized on the oxygen atoms in the
CuO2 plane. Their results, marked by “+” in Figure 2,
are in agreement with our calculation.
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Fig. 2. Dependence of ξ2D at T = 0 on x. The empty [10] and
full [29] circles indicate experiments, +’s show numerical simu-
lation [19] data. The solid line represents 2.8λ0.8 Å exp(2π/3λ),
with λ = 20x.
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Fig. 3. Dependence of ξ2D(t, λ) on T for several concentra-
tions. Symbols are from experiments: empty circles for x =
0.02, full circles for x = 0.03, +’s for x = 0.04, all from ref-
erence [10]. Full lines show results from Figure 2 (for low T )
or equation (55), with C = L0C̃ = 1.92 Å (for high T ). Dot-
ted lines interpolate between these low- and high-T theories.
Dashed lines correspond to equation (70).

We next turn to the temperature dependence of ξ at
x > xc. Figure 3 exhibits the calculated temperature de-
pendence of ξ, for several concentrations x. The curves
were found from equation (55) with C = L0C̃ = 1.92 Å
(λ0 < t0, as in Figure 1 discussed above), and from equa-
tion (54), with C(x) = 2.8λ0.8

0 Å (λ0 > t0). We have
also used 2πρs = 150 meV. The theoretical lines are for
x = 0.0225, 0.029 and 0.036 (instead of the experimental
values 0.02, 0.03, and 0.04 given by Keimer et al.). The
values chosen are within the experimental error [10]. Since
the prefactors used in our fits differ in the limits λ0 � t0
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Fig. 4. TN(x)/TN(0) versus x. Full line is theory, and the
points are from experiments: full circles from reference [23],
+’s from reference [24], empty circles from references [31,32].
Dashed line indicates λ0 = t0.

and λ0 � t0, the high- and low-temperature portions of
the plots do not match at λ0 = t0. There the two segments
are connected by dotted lines. This intermediate region is
in any case outside the scope of our theory. The dashed
lines in Figure 3 represent the heuristic expression

ξ−1(T, x) = ξ−1(0, x) + ξ−1(T, 0), (70)

used in reference [10] to fit their data. It seems that the
heuristic expression works as well; however, it seems that
it has no theoretical basis.

The theoretical curves in Figure 3 agree with
the experimental results at temperatures lower than
∼ 350−400 K. At higher temperatures the calculated val-
ues of ξ are smaller than the measured ones. Perhaps,
at such high temperatures thermal fluctuations come into
play, causing a decrease of Q from 1/N to lower values. It
is also possible that at high T the holes are more mobile,
so that one should average over more than one bond per
hole, thus reducing the effective dipole moment. At tem-
peratures lower than 200−250 K the correlation length
does not depend on the temperature up to exponentially
small terms, of the order of ξ(0, T )−1 [10]. This nontrivial
property of the correlation length is reproduced well by
our calculation.

Given the above values for C0 and ω, and the value
α = 10−4 from reference [10], we solved equation (62)
and found the critical value of λ to be λc = 0.366. With
A = 20, the critical concentration, xc, for the disappear-
ance of the long-range order at T = 0 is found to be
xc = 0.0183, in very good agreement with the experimen-
tal value xc = 0.0175 from reference [22] (but in disagree-
ment with Ref. [26], which gives xc = 0.027).

Using the above parameters, i.e. A = 20, α = 10−4,
and approximating the prefactor by a constant, C(t, x) ≈
C(0, xc) = C(0, 0.0183) = 1.26 Å, Figure 4 shows the the-
oretical concentration dependence of TN , calculated from
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equations (63) for t0 > λ0 and (62) for λ0 > t0, with
no further fitting of the parameters. (The line t0 = λ0

is also depicted in the figure.) At high temperatures the
prefactor is larger, 1.9 Å. However, the effect of this dif-
ference on TN is small, since TN depends on the prefactor
only logarithmically. At small concentrations, our theoret-
ical TN (x) decreases with the increase of x linearly with
the rate 55 K/% (based on the value of A as determined
from the ξ data). At x = xc, TN (xc) is roughly equal to
TN(0)/3. Then TN abruptly falls to zero, as our calcula-
tion finds that the correlation length is independent of the
temperature for t0 < λ0.

Figure 4 includes the results of several experiments. It
is seen that those of reference [31] seem to disagree with
our phase diagram: the data fall linearly with a slope of
162 K/%, (larger by about a factor of 3 than our theo-
retical value, which was extracted from the data for ξ),
extrapolating to x = 0.02 without the jump in TN . How-
ever, we should note that Chen et al. [31] determined x
for their O-doped samples from Hall effect data. In refer-
ence [32] TN and the Hall density of holes were measured
for a Sr doped sample. The Sr concentration in the melt
was 0.0022, while the Hall measurements gave a smaller
hole density, 0.0016. Figure 4 shows that in this case the
experimental point (with x = 0.0022) is closer to the theo-
retical curve than the data from reference [31]. Saylor and
Hohenemser [23] measured TN (x) in Sr-doped samples of
lanthanum cuprate. Although their TN (0) = 317 K was
somewhat less than in the best samples of reference [10],
their TN(x) decreased linearly with the rate 90 K/% till
x = 0.015. In the region between x = 0.015 and 0.018, TN
fell from ≈ 180 K to 20 K. This behavior of TN (x) is close
to our phase diagram, Figure 4.

Very recently, Wakimoto et al. [27] measured the phase
diagram of oxygen doped La1.95Bi0.05CuO4, and their
TN(x) agrees qualitatively with our theory: it falls al-
most linearly down to TN (0.012) ≈ 160 K, and then drops
sharply towards xc ≈ 0.015. Both this small value of xc
and the low-T value of the correlation length near xc, as
measured in reference [27], are consistent with our calcu-
lations, with A ≈ 30.

8 Conclusions

Most of this paper was devoted to a detailed description
of the theory for the effects of quenched dipolar defects
on AFM correlations in doped antiferromagnets. The re-
sults should apply directly to problems with correlated
random fields, and could generate future expansions in
(2 − θ) for related problems. A second major part of the
paper was devoted to the effects of quenched FM bonds
in an antiferromagnet. This required some discussion of
quenched-annealed averaging and interpolation between
the two types of averaging. We hope that this discussion
will stimulate some further studies of such systems, e.g.
by numerical simulations or by theories which would cover
the intermediate temperature and concentration regime.
We also hope that our study will stimulate more material
research onto AFM-FM mixed systems.

In the previous section we discussed some fits of our
theory (using the results for quenched averaging) to data
from doped lamellar oxides. As stated, these fits are based
on various assumptions. However, we find it satisfactory
that our theory reproduces many of the features observed
in these experiments.

Before concluding, we would like to note that dipolar
defects of the kind discussed in our paper may arise not
only from single FM bonds; they will also arise from larger
finite localized defects, provided these defects prefer a lo-
cal FM ordering of the spins. Therefore, our results may
also apply to the cuprates even if the localization length
of the holes there is larger than one. Indeed, experiments
indicate a localization length of a few lattice constants
[31,32]. A similar dipole-like decay of the canted moments,
as 1/r, was also predicted for the case when the holes are
localized around the center of a Cu plaquette in the plane,
instead of the oxygen ion [33]. Our results may thus also
apply to that case.

Finally, we note that the calculation presented above
ignored quantum spin fluctuations. We have checked that
integration of the quantum fluctuations, similar to that
done in reference [9], only renormalizes the initial param-
eters of the effective classical model also in the random
case. Therefore, our theory also applies for the quantum
case at finite temperatures.

We have benefitted from many discussions with R.J.
Birgeneau, A.B. Harris, A.S. Ioselevich, M.A. Kastner, D.E.
Khmel’nitskii, V.V. Lebedev, T. Nattermann and M. Schwartz.
This project has been supported by a grant from the U. S.-
Israel Binational Science Foundation (BSF) and from the Israel
Science Foundation.

Appendix A: Gauge transformation
of the fields φµ

In order to eliminate the functions Aµνi (r) from the ex-
pression for the derivatives ∂iñ (Eq. (16)) we introduce
the transformation

φµ =
∑
µ1

Tµµ1 φ̃µ1 , (A.1)

where the coefficients Tµµ1 are determined by

∂iTµµ1 =
∑
µ2

Aµµ2

i Tµ2µ1 , (A.2)

with ∑
µ

Tµµ1Tµµ2 = δµ1µ2 , Tµµ1 = Tµ1µ. (A.3)

Note that the sums run from 1 to N − 1. Assuming
that Aµµ1

i is independent of xi, the solution of equations
(A.2, A.3) reads Tµµ1 = T 0

µµ1
exp(−iκxi), where κ is a real

eigenvalue of the Hermitian matrix iAi. Deviations from
this approximation naturally involve higher derivatives of
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Aµµ1

i which are related to higher powers of the gradients
in H. These are strongly irrelevant.

Inserting the above relations into equation (16)
we obtain

∂in = ñ

[
∂i

√
1− φ̃2 −

∑
µ

φ̃µ
∑
ν

TνµB
ν
i

]

+
∑
µ

[
Bµi eµ

√
1− φ̃2 + ∂iφ̃µ

∑
ν

Tνµeν

]
. (A.4)

Therefore, defining

ẽµ =
∑
ν

eνTνµ, B̃µi =
∑
ν

Bνi Tνµ, (A.5)

Equation (A.4) takes the form of equation (16) without

the Aνµi terms, with φµ, eµ and Bµi replaced by φ̃µ, ẽµ
and B̃µi , respectively. For brevity, we have omitted in the
subsequent derivations the superscript .̃ It is seen that
the gauge transformation can be regarded as a rotation of
the base vectors eµ, and reflects the arbitrariness of their
choice [16].

Appendix B: The phase boundary at 2 + ε
dimensions

For completeness, we present here the solution of the re-
cursion relations (47) in d = 2 + ε dimensions, and obtain
the critical line tN (x), where x is the defect concentration.

The recursion relations (47) have four fixed points in
the [λ, t] plane: [0, 0], [0, 2πε/(N − 2)], [2πε/N , 0], and
[2πε/(2N−3), 2πε/(2N−3)]. For N > 3/2, the first point
is stable, the last one is doubly unstable and the other two
are unstable in one direction and stable in the other.

The solution of equations (47) for ` > `0 and
Heisenberg spins (N = 3) reads

λ(`) = λ0

[
eε(`−`0) −

3λ0

2πε

(
eε(`−`0) − 1

)]−1

,

1− λ(`)/t(`)

1− λ0/t0
=

[
λ(`)− 2πε/3

λ0 − 2πε/3

]1/3

· (B.1)

The phase boundary is identified as the line which sepa-
rates the flow to the origin (in the ordered phase) from
the flow to infinity (in the disordered phase). It is easy to
check that for t0 > λ0, the initial point [λ0, t0] will flow to
the “pure” fixed point [0, 2πε] when

1−
λ0

tN (x)
=

(
1−

3λ0

2πε

)1/3

,

0 ≤ λ0 ≤ λc =
2πε

3
, (B.2)

where the second of equations (B.1) has been used. On
the other hand, using again that equation, we find that

for t0 < λ0 the solution flows to the “random” fixed point,
[2πε/3, 0], provided that

λ0 ≡ λc =
2πε

3
, λc > t0 > 0. (B.3)

The two portions of the critical line, equations (B.2, B.3),
are separated by the multicritical point at [2πε/3, 2πε/3].
It is interesting to note that also here, like the behav-
ior found for tN (x) for weakly coupled planes, there is a
vertical section of the phase boundary.

We thus conclude that for t0 > λ0 the randomness
is irrelevant, and the “pure” critical behavior (which has
a correlation length exponent ν = 1/ε) remains stable.
However, finite values of λ yield a correction to this be-
havior, with exponent−ε (or, more generally,−ε/(N−2)).
The correlation length is obtained from equation (49),
using the matching conditions (50). One finds

ξ ∼ exp(`∗) = L0

[
λ−1(`∗)− λ−1

c

λ−1
0 − λ

−1
c

]1/ε

· (B.4)

For t0 > λ0 the iterations are stopped at t(`∗) ∼ 2π. In
the range λ(`∗) < λc we can find λ(`∗) by considering
the difference λ0/tN − λ0/t0, using equations (B.1, B.2).
We find

t−1
N − t

−1
0 ' λ−1

0

λ(`∗)

3λc

(
1−

λ0

λc

)1/3
, (B.5)

from which it follows that

ξ ∼ e`
∗

∼ (t0 − tN (x))−1/ε[1 +Bx(t0 − tN (x)) + ...],
(B.6)

where B is a constant and the term associated with it
comes from corrections of order λ0e

−`∗ . For λ0 > t0,
λ(`∗) = 2π, so that

ξ ∼ e`
∗

∼ (λ−1
0 − λ−1

c )−1/ε. (B.7)

Note added in proofs

Recently, M. Hücker et al. (Phys. Rev. B 59, R725 (1999))
published new data for TN (x) in La1−xSrxCuO4. These
data fully agree with our phase diagram, Figure 4. The
slope of TN(x) at small x also confirms our estimate of
the parameter A.
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